4

Experimental

4.1 Matização Computacional e Receitas Metaméricas

As cores denominadas cinza claro, cinza escuro e bege são utilizadas nos experimentos. As suas respectivas cores padrão foram matizadas tendo como referência as amostras físicas cedidas pela Marinha e representadas pela Tabela 2. As coordenadas colorimétricas $L^*a^*b^*$ das cores padrões cinza claro, cinza escuro e bege estão no Quadro 1 e verifica-se no Quadro 2 que as cores estão dentro das tolerâncias requeridas. As respectivas curvas espectrofotométricas estão na figura 47 e o conjunto de pontos representativos das mesmas constam da Tabela 3.

COR	D65/10			A/10			TL84/10			$\Delta E_{\it CMC(2:1)}$ máximo		
0011	L*	a*	b*	L*	a*	b*	L*	a*	b*	D65/10	A/10	TL84/10
Padrão Cinza Claro Tafetá	59,15	-0,27	-1,59	59,07	0,05	-1,44	58,95	-1,77	-2,09	1,0	1,4	1,4
Padrão Cinza Escuro Tafetá	27,92	-0,61	-2,50	27,76	0,41	-2,84	27,52	-1,46	-3,00	1,0	1,4	1,4
Padrão Bege Tafetá	64,20	0,53	8,90	64,90	2,95	9,67	64,67	-0.54	10,06	1,0	1,4	1,4

Quadro 1 – Cores padrão matizadas para os experimentos

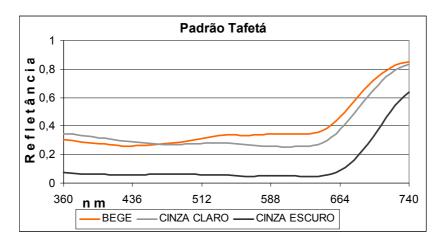


Figura 47 – Curvas espectrofotométricas de cores padrão

	Delta E CMC 2:1			
	D65/10	A/10	TL84/10	
Padrão Cinza Claro Tafetá	0.37	0.60	1.07	
Padrão Cinza Escuro Tafetá	0.30	1.01	1.31	
Padrão Bege Tafetá	0.14	0.27	1.03	

Quadro 2 – Diferenças entre os valores da norma (padrões virtuais) e as amostras têxteis (padrões físicos) no substrato tafetá

Tabela 3 – Pontos da curva de refletância dos padrões Bege, Cinza escuro e Cinza claro

				Pad	drão Cinza	Claro Tat	fetá			
Comprimento de onda (nm)	360	370	380	390	400	410	420	430	440	450
Refletância (R)	0,3442	0,3442	0,3353	0,3260	0,3179	0,3090	0,3007	0,2928	0,2856	0,2800
(nm)	460	470	480	490	500	510	520	530	540	550
(R)	0,2752	0,2722	0,2708	0,2705	0,2733	0,2773	0,2808	0,2819	0,2802	0,2760
(nm)	560	570	580	590	600	610	620	630	640	650
(R)	0,2708	0,2658	0,2610	0,2571	0,2548	0,2546	0,2559	0,2601	0,2726	0,2993
(nm)	660	670	680	690	700	710	720	730	740	
(R)	0,3458	0,4114	0,4885	0,5686	0,6471	0,7166	0,7695	0,8081	0,8323	
				Pad	rão Cinza	Escuro Ta	fetá			
Comprimento de onda (nm)	360	370	380	390	400	410	420	430	440	450
Refletância (R)	0,0732	0,0694	0,0658	0,0633	0,0614	0,0594	0,0580	0,0576	0,0585	0,0603
(nm)	460	470	480	490	500	510	520	530	540	550
(R)	0,0613	0,0612	0,0613	0,0610	0,0605	0,0589	0,0576	0,0571	0,0556	0,0520
(nm)	560	570	580	590	600	610	620	630	640	650
(R)	0,0487	0,0483	0,0503	0,0522	0,0518	0,0492	0,0464	0,0456	0,0486	0,0569
(nm)	660	670	680	690	700	710	720	730	740	
(R)	0,0756	0,1103	0,1634	0,2345	0,3214	0,4151	0,5032	0,5788	0,6357	
					Padrão Bo	ege Tafetá				
Comprimento de onda (nm)	360	370	380	390	400	410	420	430	440	450
Refletância (R)	0,3034	0,2972	0,2884	0,2818	0,2752	0,2676	0,2625	0,2608	0,2624	0,2669
(nm)	460	470	480	490	500	510	520	530	540	550
(R)	0,2713	0,2762	0,2822	0,2893	0,2998	0,3112	0,3233	0,3346	0,3404	0,3388
(nm)	560	570	580	590	600	610	620	630	640	650
(R)	0,3351	0,3363	0,3413	0,3446	0,3442	0,3430	0,3428	0,3460	0,3588	0,3872
(nm)	660	670	680	690	700	710	720	730	740	
(R)	0,4353	0,5012	0,5757	0,6489	0,7163	0.7722	0,8116	0,8383	0,8533	

Outras três cores denominadas 1, 2 e 3 também são utilizadas nos experimentos e foram obtidas à partir de receitas previamente arbitradas. Para ilustrar o fenômeno de metameria, foram matizadas amostras nas cores cinza claro, cinza escuro e bege com índice de metameria, para mudança de iluminante CIE (A), próximo ao valor de 1,4.

O processo de tingimento foi realizado por técnicos e alunos do curso de Engenharia Industrial Têxtil nas instalações da Unidade Operacional de Ensaios Químicos do Centro de Tecnologia da Indústria Química e Têxtil (CETIQT) do SENAI – Rio de Janeiro.

4.1.1

Materiais

Na realização da parte experimental deste trabalho, foram usados os materiais listados abaixo:

4.1.1.1

Substratos

Foram utilizados tecidos planos de algodão cujas características são apresentadas na Tabela 4.

Artigo	Armação	Titulo Ne (urdume)	Titulo Ne (trama)	Gramatura (g/m²)	Composição
A (Tafetá)	1 x 1	28	28	121,50	100% CO
B (Gorgurão)	2 x 2	16	9	276,27	100% CO
C (Sarja)	3 x 1	16	9	276,41	100% CO
D (Tencel)	3 x 1	16	9	282,05	15% CO e 85% Liocel

Tabela 4 – Diferentes tipos de artigos

Estes tecidos foram submetidos aos processos de mercerização e alvejamento e aos processos de tratamento primário (cozinhamento e alvejamento), na planta piloto de acabamento do SENAI-CETIQT.

Para a verificação da uniformidade e repetitividade foi utilizado um artigo de tafetá 100% algodão, pronto para tingir, em que o processo de tratamento primário foi feito em condições industriais.

Todos os substratos utilizados foram cortados e pesados em balança analítica com resolução de 0,1mg, e cada uma das amostras foi devidamente identificada para reconhecimento posterior.

Verificou-se que os tecidos utilizados estavam em boas condições e em quantidade suficiente, para a preparação de todos os tingimentos.

4.1.1.2

Corante

Os corantes usados para os tingimentos estavam em boas condições e foram sempre estocados de maneira correta. É importante que ele realmente represente o matiz e a concentração real, ou seja o ideal considerado padrão pelo fabricante.

Para realização dos tingimentos, os corantes utilizados foram os reativos, comercialmente conhecidos como Procion HEXL, produzidos pela BASF S.A. .

A relação dos corantes é a seguinte:

Amarelo Procion HEXL:

Crimson Procion HEXL;

Marinho Procion HEXL;

Royal Procion HEXL; e

Castanho Procion HEXL.

4.1.1.3

Auxiliares

Os auxiliares foram preparados cuidadosamente. É importante verificar sempre a qualidade e a concentração antes de submetê-los ao processo de tingimento. Todos os reagentes foram sempre bem identificados para evitar substituição não desejada, o que pode influenciar o rendimento do tingimento de maneira desastrosa.

Entre os auxiliares, foi utilizado como detergente o produto Sandopan ANC com uma concentração de 1ml/l.

Como eletrólito foi utilizado o NaCl e como álcali o Na₂CO₃ ambos foram usados em solução.

As soluções utilizadas foram:

NaCl 200g/I; e Na_2CO_3 100g/I.

4.1.1.4

Água

A água utilizada para realização do tingimento é extremamente importante, mesmo em escala laboratorial. Não foi utilizada nos tingimentos água destilada

pois se desejava uma boa reprodutibilidade entre o laboratório e a produção industrial. É imprescindível que a água esteja sempre dentro limites mostrados na tabela 5 (Revista Química Têxtil, 1998).

Tabela 5 – Parâmetros usados para verificação da qualidade da água a ser utilizada no tingimento

Dureza total CaCO ₃	Inferior a 30ppm
PH	7,0 ± 0,5
Cobre	≤ 0,05mg/l
Ferro	≤ 0,05mg/l
Íons Cloreto	≤ 300mg/l (importante no processo de ensaboamento)

Foi feita a verificação da qualidade da água da torneira que seria usada como fonte, pois diferenças neste parâmetro podem trazer problemas para a repetitividade dos tingimentos.

4.1.2

Equipamentos

Além dos equipamentos e vidrarias comuns aos laboratórios, foram usados para a execução deste trabalho os equipamentos descritos a seguir:

4.1.2.1

Balança

As pesagens dos tecidos e dos corantes foram feitas em balança analítica Sartorius, modelo AC 2100, com uma resolução de 0,1mg (figura 48).

Figura 48 – Balança Analítica

4.1.2.2

Dosimat

Este aparelho foi utilizado para se fazer a dosagem de água necessária para o preparo das soluções de corantes, possui resolução de 0,1ml (figura 49).

Figura 49 - Dosimat

4.1.2.3

Pipeta Eletrônica

Para garantir maior resolução na pipetagem do processo de tingimento, foram utilizadas soluções de corantes e auxiliares com o auxílio da pipeta eletrônica *Rainin EDP plus*, com uma resolução de 2% (figura 50).

Figura 50 – Pipeta Eletrônica

4.1.2.4

Aparelho de Tingimento

O equipamento utilizado para o tingimento foi o *Tubotest* modelo AT – 1RP da marca *Kimak*, com microprocessador, representado pela figura 51.

Figura 51 – Vista externa e interna do Tubotest

4.1.2.5

Espectrofotômetro

Os equipamentos utilizados para as medições realizadas foram dois: um espectrofotômetro, da marca Minolta, modelo CM-3600d, o qual faz medições simultâneas com as geometrias especular incluído (SIN) e excluído (SEX) e um espectrofotômetro da marca *BYK-Gardner*, modelo *Colorview* 9000 o qual faz medições com a geometria 45/0. Ambos foram calibrados pela UOC, laboratório credenciado pelo INMETRO. Os dados colorimétricos foram obtidos por meio do programa de colorimetria denominado *SpectraMatch*, versão 3.4.5.D.

Figura 52 – Espectrofotômetros 3600d e ColorView 9000

4.1.3

Tingimentos

Todos os tingimentos foram realizados no laboratório da UNEEQ, localizado nas dependências do SENAI-CETIQT.

Utilizou-se o processo por esgotamento, e antes da realização de cada tingimento faz-se necessário a verificação de todo o equipamento. Deve-se estar seguro de que a temperatura que aparece no display da máquina é a mesma do banho de tingimento e não somente a do banho de aquecimento, o aparelho

empregado deverá estar apto e ser capaz de realizar as operações de aquecimento e de resfriamento e de seguir os gradientes estabelecidos. Verificase também se a temperatura está distribuída de maneira uniforme em todas as posições da máquina.

4.1.3.1

Processo

Os substratos foram pesados sempre com a massa de $5,0000 \pm 0,0050$ gramas e em seguida amarrados (figura 53) com filamentos de poliéster para melhorar a uniformidade dentro do caneco, ou seja, garantir que o fluxo do banho de tingimento fosse igual, tanto internamente quanto externamente na amostra a ser tinta.

Figura 53 – Amostras preparadas para serem tintas

Os auxiliares foram usados em solução. Foram pesados, dissolvidos e completados com quantidade suficiente de água, usando um balão volumétrico. É importante ressaltar que antes de completar o volume para o preparo da solução, esta estava a 21°C, que é a temperatura para a qual a vidraria estava calibrada. Os frascos com as soluções estavam perfeitamente identificados.

Os corantes também foram utilizados em solução e a pesagem foi feita com utilização de balança analítica. O Dosimat foi o responsável em dosar a água necessária para o preparo da solução de corante. Ela foi mantida em frasco fechado, claramente identificada com nome e concentração. Por se utilizar corantes reativos, a solução não foi estocada sendo utilizada sempre no mesmo dia em que foi preparada.

A quantidade inicial de água necessária para preparar o banho de tingimento é calculada reduzindo-se o volume total do banho pelo volume das soluções de corantes e auxiliares, de modo que a correta relação de banho seja obtida após a adição de todos os produtos.

Tomados todos os cuidados para a preparação, os reagentes foram adicionados dentro dos canecos para que fossem tingidos. A figura 51 mostra o aparelho de tingimento. A ordem de colocação foi a seguinte:

Água; Cloreto de Sódio; Corantes; Tecido; e Barrilha após 45 minutos.

4.1.3.2

Receitas

As receitas utilizadas, constantes das Tabelas de 6 a 12, foram escolhidas de um banco de dados da UOC, e para utilização dos auxiliares, eletrólito (NaCl), álcali (Na₂CO₃) e detergente foi consultado o catálogo do fabricante do corante, o qual propunha:

Concentração do NaCI: 60g/I;
Concentração da Barrilha: 15g/I;
Concentração do detergente: 1ml/I;e
Foi usada uma relação de banho de 1:20.

Tabela 6 – Concentração dos corantes para as cores padrões

Corantes	Cor Padrão 1	Cor Padrão 2	Cor Padrão 3
Amarelo (%) spm	0,7681	0,3339	0,1938
Crimson (%) spm	0,3339	0,7681	0,3339
Marinho (%) spm	0,1938	0,1938	0,7681
Corantes	Cinza Escuro	Cinza Claro	Bege
Amarelo (%) spm	0,9609	0,0434	0,1335
Crimson (%) spm	0,3504		0,0212
Royal (%) spm	1,6797		
Marinho (%) spm		0,1845	0,1107
Castanho (%) spm		0,0962	

Tabela 7 – Concentração dos corantes para as cores metaméricas

Corantes	Cinza Escuro	Cinza Claro	Bege		
	G	orgurão			
Amarelo (%) spm	0,3965	0,0433	0,0902		
Azul (%) spm	3,5353	0,3374	0,2145		
Laranja (%) spm	0,3396	0,0545	0,2145		
	Sarja				
Amarelo (%) spm	0,4767	0,0519	0,1039		
Azul (%) spm	3,8623	0,3620	0,2252		
Laranja (%) spm	0,4324	0,0710	0,0497		
		Tafetá			
Amarelo (%) spm	0,7622	0,0604	0,1279		
Azul (%) spm	5,7890	0,4063	0,2535		
Laranja (%) spm	0,8225	0,0907	0,0673		

Tabela 8 – Concentração dos corantes da cor Padrão 1 e suas variações em + 20%

		+ 20%	+ 20%	+ 20% Azul
Corantes (%) spm	Cor Padrão 1	Amarelo	Vermelho	Marinho
Amarelo	0,7681	0,9217	0,7681	0,7681
Crimson	0,3339	0,3339	0,4007	0,3339
Azul Marinho	0,1938	0,1938	0,1938	0,2326

Variações em torno da Cor Padrão 2

Tabela 9 – Concentração dos corantes da cor Padrão 2 e suas variações em + 20%

Corantes	Cor Padrão 2	+ 20% Amarelo	+ 20% Vermelho	+ 20% Azul Marinho
Amarelo (%) spm	0,3339	0,4007	0,3339	0,3339
Crimson (%) spm	0,7681	0,7681	0,9217	0,7681
Azul Marinho (%) spm	0,1938	0,1938	0,1938	0,2326

Variações em torno da Cor Padrão 3

Tabela 10 - Concentração dos corantes da cor Padrão 3 e suas variações em + 20%

		+ 20%	+ 20%	+ 20% Azul
Corantes	Cor Padrão 3	Amarelo	Vermelho	Marinho
Amarelo (%) spm	0,1938	0,2326	0,1938	0,1938
Crimson (%) spm	0,3339	0,3339	0,4007	0,3339
Azul Marinho (%) spm	0,7681	0,7681	0,7681	0,9217

Receitas com corantes Individuais:

Tabela 11 – Receita para tingimentos com os corantes individuais e para as cores padrões 1, 2 e 3

Corantes (%) spm	T1 (*)	T2	Т3	T4	T5	Т6	T7	Т8	P1 (**)	P2(**)	P3(**)
Amarelo	-	0,7681	0,3339	0,1938	-	-	-	-	0,7681	0,3339	0,1938
Crimson	-	-	-	-	0,7681	0,3339	-	-	0,3339	0,7681	0,3339
Azul Marinho	-	-	-	-	-	-	0,7681	0,1938	0,1938	0,1938	0,7681

^(*) Tingimento cego.(**) Cores Padrões 1, 2 e 3, respectivamente.

Tabela 12 – Receita para tingimentos com os corantes individuais e para as cores

padrões 1, 2 e 3

Corantes	T1 (*)	Т9	T10	T11	T12	T13	P4 ^(**)	P5 ^(**)	P6 ^(**)
Amarelo (%) spm	_	0,9609	0,0434	0,1335	-	-	0,7681	0,3339	0,1938
Royal (%) spm	-	-	1	-	1,6797	-	0,3339	0,7681	0,3339
Castanho (%) spm	-	-	1	-	1	0,0962	0,1938	0,1938	0,7681
Corantes	T1 (*)	T14	T15	T16	T17		P4 ^(**)	P5 ^(**)	P6 ^(**)
Crimson		0,3504	0,0212				0,3504		0,0212
(%) spm	-			-	-	-		-	
Azul Marinho				0,1845	0,1107			0,1845	0,1107
(%) spm	-	-	-			-	-		

^(*) Tingimento cego.(**) Cores Padrões P4 Cinza Escuro, P5 Cinza Claro e P6 Bege, respectivamente.

4.1.4

Medição da Cor

Para a realização da medição da cor em uma amostra têxtil, com o propósito de se efetuar uma avaliação colorimétrica, deve-se levar em conta a importância da metodologia de medição para obtenção de resultados reais da cor das amostras.

Todos os parâmetros que podem influenciar na captação da refletância devem ser cuidadosamente controlados, deve-se, portanto estabelecer uma padronização das condições da amostra, do ambiente e do instrumento.

A metodologia de medição estabelecida para os artigos têxteis utilizados neste trabalho foi a seguinte:

Calibração: Antes de realizar as medições são feitas as calibrações dos espectrofotômetros com os padrões preto e branco

Número de pontos a serem medidos: oito pontos em diferentes posições e o mais distante possível uns dos outros.

Abertura de medição: A maior abertura foi utilizada a fim de abranger a maior área passível de medição da amostra.

Geometria de medição: Foram utilizadas todas as geometrias de medição do equipamento aplicadas na área industrial. Geometria Especular Incluída (SIN), Especular Excluída (SEX) e 45°/0°.

Preparação da amostra: Antes das medições as amostras são passadas com ferro elétrico, para deixá-las livre de todo amarrotamento. Em seguida são levadas para o laboratório para serem climatizadas. Foi verificada a opacidade das amostras medindo as mesmas sobre um fundo preto e um fundo branco. Os resultados da medição (curva de refletância) não apresentaram nenhuma diferença significativa. Em relação às amostras têxteis utilizadas no trabalho, para o artigo "A" da tabela 4 foram usadas quatro camadas e para os artigos B, C e D foram utilizadas apenas duas camadas para a realização das medições.

Orientação da amostra: foi utilizado sempre o lado direito do tecido, e nas estruturas de sarja buscou-se sempre realizar as medições com as diagonais na mesma orientação.

A temperatura ambiente de $25 \pm 0.5^{\circ}$ C das medições realizadas foi controlada por um termômetro DIGI-SENSE, modelo nº93400-00 e o espectrofotômetro foi ligado sempre meia hora antes de serem feitas as medições.

4.1.4.1

Uniformidade

A avaliação da uniformidade consiste inicialmente em analisar a homogeneidade ao longo de uma determinada amostra. São feitas as 8 medições, em diferentes pontos da amostra tinta e em seguida é calculada a média destas medições realizadas, que será então considerada como o ponto de comparação. A continuação do cálculo é realizada subtraindo-se as coordenadas (L*a*b*) desta média por cada ponto individual medido. Por fim, utiliza-se a seguinte fórmula:

$$\Delta E_{uni} = \frac{1}{n} \sum_{i=1}^{n} \Delta E_i^* = \frac{1}{n} \sum_{i=1}^{n} \left[\left(\overline{L^*} - L_i^* \right)^2 + \left(\overline{a^*} - a_i^* \right)^2 + \left(\overline{b^*} - b_i^* \right)^2 \right]^{\frac{1}{2}}$$
 (67)

Onde ΔE_{uni} é a diferença média de cor CIELAB de n medições que caracterizam a uniformidade de uma amostra;

 ΔE_{i}^{*} é a diferença de cor CIELAB entre a iésima medição individual e a média de n medições.

 L_i^* , $a_i^* e b_i^*$ são os valores CIELAB da iésima medição individual.

 $\overline{L}^*, \overline{a^*}e \overline{b^*}$ são os valores médios de n, utilizando 8 medições.

A seguir é mostrada a representação gráfica do cálculo realizado:

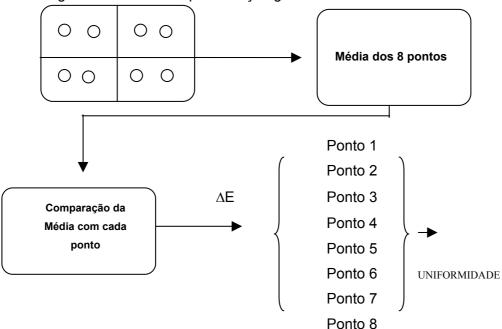


Figura 54 – Representação gráfica da medida de uniformidade

Com os dados assim obtidos, podemos então avaliar a uniformidade das amostras que foram tintas.

4.1.4.2

Repetitividade

A avaliação da repetitividade consiste em verificar a diferença de cor entre as amostras de uma partida. Inicialmente são realizadas as medições como descrito no item 3.4, desta forma encontra-se valores (L*a*b*) para cada amostra da partida. A média dos valores L*a*b* de todas as amostras é considerada como o ponto de comparação. A continuação do cálculo de ΔE_{rpt} é feita subtraindo-se os valores L*a*b* de cada amostra pela média obtida. Por fim utiliza-se a seguinte fórmula:

$$\Delta E_{rpt} = \frac{1}{n} \sum_{i=1}^{n} \Delta E_{i}^{*} = \frac{1}{n} \sum_{i=1}^{n} \left[\left(\overline{L^{*}} - L_{i}^{*} \right)^{2} + \left(\overline{a^{*}} - a_{i}^{*} \right)^{2} + \left(\overline{b^{*}} - b_{i}^{*} \right)^{2} \right]^{\frac{1}{2}}$$
 (68)

Onde:

 ΔE_{rpt} é a diferença média de cor CIELAB de n medições que caracterizam a repetitividade de uma amostra;

 ΔE_i^* é a diferença de cor CIELAB entre a medição da amostra e a média das 12 amostras;

 $L_i^*, a_i^* e \ b_i^*$ são valores CIELAB da iésima medição de cada amostra individual; e

 $\overline{L^*}$, $\overline{a^*}e$ $\overline{b^*}$ são os valores médios de n, utilizado em 12 amostras.

4.2

Correção Instrumental

Comparando duas amostras com estruturas (fio, padronagem etc.) diferentes podemos chegar em três situações de igualdade:

- Química: as combinações de corantes (receitas) usadas no tingimento das duas são iguais;
- 2) Espectrofotométrica e colorimétrica: as curvas de refletância das duas amostras são iguais e conseqüentemente os valores triestímulos e as coordenadas CIELAB são iguais; e

$$R(\lambda)_1 = R(\lambda)_2 \tag{69}$$

е

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{1} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{2} \tag{70}$$

3) Visual: as cores das duas amostras parecem iguais visualmente.

O objetivo da correção instrumental é igualar as curvas de refletância. Há três possibilidades de calcular a correção necessária:

- Calcula-se a receita correta, para a nova estrutura, usando-se o próprio software (Spectra Match, da Minolta Instrument Systems V.3.4.5D) de formulação caso esteja disponível, para o "novo" substrato, um banco de dados (ou seja, séries de tingimentros com 10 a 12 concentrações de corantes);
- 2. Pode-se fazer tingimentos no novo substrato com a combinação "padrão" e com cada um dos corantes individuais nas mesmas concentrações. Calcula-se as correções utilizando-se as variações dos valores triestímulos em relação às concentrações e obtendo-se um gradiente no formato $\Delta X/\Delta c_1$ ou $\Delta L/\Delta c_1$. ("tingimentos com corantes individuais"); ou
- 3. Pode-se também calcular os gradientes no formato $\Delta X/\Delta c_1$ ou $\Delta L/\Delta c_1$ fazendo-se quatro tingimentos no novo substrato: com a combinação "padrão" e variando os três corantes um a um por 10% ou 20% acima da concentração padrão ("tingimentos com combinações")

Nesse trabalho foram usados os três métodos de correção. O primeiro método, usando-se o banco de dados de tingimento, foi utilizado para matizar as cores padrão cinza escuro, cinza claro e bege, bem como, as cores metaméricas. Os dois outros métodos, tingimentos com corantes individuais e com combinações, foram usados envolvendo todas as demais cores padrão.

Considerando-se uma receita qualquer inicial (equação 64), se alterarmos a concentração do corante c_1 de uma pequena quantidade Δc_1 , teremos como resultante uma mudança nos valores triestímulos e, conseqüentemente, nos valores de L*a*b*. Se dividirmos a variação de L pela variação de c_1 obteremos o gradiente $\Delta X/\Delta c_1$ que pode-se assumir como sendo linear para pequenas distâncias no espaço de cor. Portanto para a previsão da variação em Δc_1 teremos:

$$\Delta L^* = \left(\frac{\partial L^*}{\partial c_1}\right) \times \Delta C_1$$

$$\Delta a^* = \left(\frac{\partial a^*}{\partial c_1}\right) \times \Delta C_1$$

$$\Delta b^* = \left(\frac{\partial b^*}{\partial c_1}\right) \times \Delta C_1$$
(71)

se mudarmos as concentrações de uma tricomia em pequenas quantidades Δc_1 , Δc_2 e $\Delta c3$ teremos um sistema de três equações com três incógnitas;

$$\Delta L^* = \left(\frac{\partial L^*}{\partial c_1}\right) \times \Delta C_1 + \left(\frac{\partial L^*}{\partial c_2}\right) \times \Delta C_2 + \left(\frac{\partial L^*}{\partial c_3}\right) \times \Delta C_3$$

$$\Delta a^* = \left(\frac{\partial a^*}{\partial c_1}\right) \times \Delta C_1 + \left(\frac{\partial a^*}{\partial c_2}\right) \times \Delta C_2 + \left(\frac{\partial a^*}{\partial c_3}\right) \times \Delta C_3$$

$$\Delta b^* = \left(\frac{\partial b^*}{\partial c_1}\right) \times \Delta C_1 + \left(\frac{\partial b^*}{\partial c_2}\right) \times \Delta C_2 + \left(\frac{\partial b^*}{\partial c_3}\right) \times \Delta C_3$$

$$(72)$$

que resulta em:

$$L = \begin{bmatrix} \Delta L^* \\ \Delta a^* \\ \Delta b^* \end{bmatrix}$$
 (73)

$$M = \begin{bmatrix} \left(\frac{\partial L^*}{\partial c_1} \right) & \left(\frac{\partial L^*}{\partial c_2} \right) & \left(\frac{\partial L^*}{\partial c_3} \right) \\ \left(\frac{\partial a^*}{\partial c_1} \right) & \left(\frac{\partial a^*}{\partial c_2} \right) & \left(\frac{\partial a^*}{\partial c_3} \right) \\ \left(\frac{\partial b^*}{\partial c_1} \right) & \left(\frac{\partial b^*}{\partial c_2} \right) & \left(\frac{\partial b^*}{\partial c_3} \right) \end{bmatrix}$$
(74)

$$C = \begin{bmatrix} \Delta c_1 \\ \Delta c_2 \\ \Delta c_3 \end{bmatrix}$$
 (75)

$$L = M \times C \tag{76}$$

A matriz **M** chama-se "matriz de influência" e representa o efeito da concentração de cada um dos corantes nas coordenadas CIELAB.

Para obtermos os valores de $^{\Delta c_i}$ teremos:

$$C = L \times M^{-1} \tag{77}$$

$$\begin{bmatrix} \Delta c_1 \\ \Delta c_2 \\ \Delta c_3 \end{bmatrix} = \begin{bmatrix} \Delta L^* \\ \Delta a^* \\ \Delta b^* \end{bmatrix} \times M^{-1}$$
(78)

Teremos por conseguinte, os valores das correções necessárias para se chegar à mesma cor desejada (curva de refletância, valores triestímulos X, Y e Z e CIELAB) nos dois substratos. A matriz **M**-¹ chama-se "matriz de correção" que é a matriz invertida de **M** (McDONALD, 1997, p.219).

4.2.1 Determinação da matriz de influência com tingimentos com corantes individuais

Tingimentos foram feitos no novo substrato com a combinação "padrão" e cada um dos corantes individuais nas mesmas concentrações, por exemplo no Quadro 3:

Quadro 3 – Tingimentos com corantes individuais

Corantes (%) spm	Cor Padrão Bege Substrato Tafetá	Cor Padrão Bege	Amarelo	Crimson	Marinho	Tingimento Cego
		Substrato Gorgurão				
Amarelo (%)	0,1335	0,1335	0,1335	-	-	-
Crimson (%)	0,0212	0,0212	-	0,0212	-	-
Marinho (%)	0,1107	0,1107	-	-	0,1107	-
Amostras	Am1	Am2	Ind1	Ind2	Ind3	SUB

Em seguida, foram feitas as medições de refletância dos tingimentos, e calculados os valores espectrais de K/S pela fórmula Kubelka-Munk:

$$\left(\frac{K}{S}\right)_{\lambda} = \frac{(1 - R_{\lambda})^2}{2R_{\lambda}} \tag{79}$$

o valor $(K/S)_{\lambda}$ de um substrato têxtil tinto com três corantes é dado pela fórmula:

$$\left(\frac{K}{S}\right)_{\lambda} = \left(\frac{K}{S}\right)_{\lambda SUB} + c_1 \left(\frac{K}{S}\right)_{\lambda 1} + c_2 \left(\frac{K}{S}\right)_{\lambda 2} + c_3 \left(\frac{K}{S}\right)_{\lambda 3} \tag{80}$$

onde

 $(K/S)_{\lambda,\mathit{SUB}}$ é do tingimento cego ("substrato");

 c_1 , c_2 e c_3 são as concentrações de cada corante (% spm);

 $(K/S)_{\lambda,i}$ são valores K/S do tingimento com concentração unitária, calculados dos valores dos tingimentos com corantes individuais:

$$\left(\frac{K}{S}\right)_{\lambda,i} = \frac{(K/S)_{\lambda,i} - (K/S)_{\lambda,SUB}}{c_i} \tag{81}$$

no exemplo do Quadro 3

$$\left(\frac{K}{S}\right)_{\lambda,Am2} = \left(\frac{K}{S}\right)_{\lambda,SUB} + 0.1335 \left(\frac{K}{S}\right)_{\lambda,1} + 0.0212 \left(\frac{K}{S}\right)_{\lambda,2} + 0.1107 \left(\frac{K}{S}\right)_{\lambda,3}$$
(82)

$$\left(\frac{K}{S}\right)_{\lambda,1} = \frac{(K/S)_{\lambda,Ind1} - (K/S)_{\lambda,SUB}}{0{,}1335}$$
(83)

$$\left(\frac{K}{S}\right)_{\lambda,2} = \frac{(K/S)_{\lambda,Ind2} - (K/S)_{\lambda,SUB}}{0{,}1335}$$
(84)

$$\left(\frac{K}{S}\right)_{\lambda,3} = \frac{(K/S)_{\lambda,Ind3} - (K/S)_{\lambda,SUB}}{0.1107}$$
(85)

para calcular o efeito de Δc_1 = 20% (ou seja, o efeito de aumentar, uma a uma, a concentração de cada dos corantes) em torno da receita "padrão" temos:

$$Am3 = \left(\frac{K}{S}\right)_{\frac{1}{2}, \frac{1}{2} + \frac{20\%}{S}} = \left(\frac{K}{S}\right)_{\frac{1}{2}, \frac{3}{2} + \frac{1}{2}} + 1,2c_1\left(\frac{K}{S}\right)_{\frac{1}{2}, \frac{1}{2}} + c_2\left(\frac{K}{S}\right)_{\frac{1}{2}, \frac{3}{2}} + c_3\left(\frac{K}{S}\right)_{\frac{1}{2}, \frac{3}{2}}$$
(86)

$$Am4 = \left(\frac{K}{S}\right)_{\lambda,c_3+20\%} = \left(\frac{K}{S}\right)_{\lambda,SUB} + c_1\left(\frac{K}{S}\right)_{\lambda,1} + 1,2c_2\left(\frac{K}{S}\right)_{\lambda,2} + c_3\left(\frac{K}{S}\right)_{\lambda,3}$$
(87)

$$Am5 = \left(\frac{K}{S}\right)_{\lambda, c_3 + 20\%} = \left(\frac{K}{S}\right)_{\lambda, SUB} + c_1 \left(\frac{K}{S}\right)_{\lambda, 1} + c_2 \left(\frac{K}{S}\right)_{\lambda, 2} + 1, 2c_3 \left(\frac{K}{S}\right)_{\lambda, 3} \tag{88}$$

aplicando o inverso da equação Kubelka-Munk calculamos a refletância (Kuehni,1975):

$$R_{\lambda} = \sqrt{1 + (K/S)_{\lambda} - [(K/S)_{\lambda}^{2} + 2(K/S)_{\lambda}]}$$
 (89)

e da refletância os valores triestímulos (CIE, 1986):

$$X = K \sum_{200}^{780} S(\lambda) \overline{x}(\lambda) R(\lambda) d\lambda$$
 (90)

$$Y = K \sum_{380}^{780} S(\lambda) \overline{y}(\lambda) R(\lambda) d\lambda$$
 (91)

$$Z = K \sum_{380}^{780} S(\lambda) \overline{z}(\lambda) R(\lambda) d\lambda$$
 (92)

$$K = \frac{100}{\sum_{380}^{780} S(\lambda) \overline{y}(\lambda) d\lambda}$$
 (93)

e dos valores X, Y e Z as coordenadas CIELAB conforme as definições explicadas no capítulo 2, Calculando as diferenças CIELAB entre as coordenadas da cor padrão e as três variações com receitas com 20% aumento em sempre um dos corantes temos os valores $\Delta L^*_{Am2-Am3}$ etc. , e dividindo esses com as diferenças em concentração $(0,2c_i)$ temos as aproximações dos elementos da matriz de influência:

$$\frac{\partial L^*}{\partial c_1} = \frac{\Delta L^*_{Am3-Am2}}{\Delta c_1}; \frac{\partial a^*}{\partial c_1} = \frac{\Delta a^*_{Am3-Am2}}{\Delta c_1}; \frac{\partial b^*}{\partial c_1} = \frac{\Delta b^*_{Am3-Am2}}{\Delta c_1}$$
(94)

$$\frac{\partial L^*}{\partial c_2} = \frac{\Delta L^*_{Am4-Am2}}{\Delta c_2}; \frac{\partial a^*}{\partial c_2} = \frac{\Delta a^*_{Am4-Am2}}{\Delta c_2}; \frac{\partial b^*}{\partial c_2} = \frac{\Delta b^*_{Am4-Am2}}{\Delta c_2}$$
(95)

$$\frac{\partial L^*}{\partial c_3} = \frac{\Delta L^*_{Am5-Am2}}{\Delta c_3}; \frac{\partial a^*}{\partial c_3} = \frac{\Delta a^*_{Am5-Am2}}{\Delta c_3}; \frac{\partial b^*}{\partial c_3} = \frac{\Delta b^*_{Am5-Am2}}{\Delta c_3}$$
(96)

4.2.2

Determinação da matriz de influência com tingimentos com combinações

Iniciamos o experimento com uma receita com concentrações c₁, c₂ e c₃, com coordenadas CIELAB L*_{Am1} a*_{Am1} e b*_{Am1} para Substrato A e L*_{Am2} a*_{Am2} e b*_{Am2} para Substrato B. Gerando variações de 20% (nas concentrações originais) no Substrato B teremos:

$$\Delta c_1 = c_1' - c_1 = 0, 2 \times c_1 \tag{97}$$

$$\Delta c_2 = c_2' - c_2 = 0, 2 \times c_2 \tag{98}$$

$$\Delta c_3 = c_3' - c_3 = 0, 2 \times c_3 \tag{99}$$

e as novas concentrações c'1; c'2 e c'3 serão:

$$c'_1 = 1, 2 \times c_1$$
; $c'_2 = 1, 2 \times c_2$ e $c'_3 = 1, 2 \times c_3$ (100)

Tabela 13 – Exemplo de receitas para calcular a correção na base de tingimentos com combinações

Corantes (%) spm	Cor Padrão 1 Substrato A	Cor Padrão 1 Substrato B	+ 20% Amarelo	+ 20% Vermelho	+ 20% Azul Marinho
Amarelo	0,7681	0,7681	0,9217	0,7681	0,7681
Crimson	0,3339	0,3339	0,3339	0,4007	0,3339
Azul Marinho	0,1938	0,1938	0,1938	0,1938	0,2326
Amostras	Am1	Am2	Am6	Am7	Am8

Em seguida, foram feitas as medições de refletância e calculadas as diferenças CIELAB entre a cor padrão e as variações no Substrato B: $\Delta L^*_{Am6-Am2}$ etc. As diferencias parciais, que representam o efeito da concentração de cada um dos corantes nas coordenadas CIELAB, são calculadas com aproximações lineares:

$$\frac{\partial L^*}{\partial c_1} = \frac{\Delta L^*_{Am6-Am2}}{\Delta c_1}; \frac{\partial a^*}{\partial c_1} = \frac{\Delta a^*_{Am6-Am2}}{\Delta c_1}; \frac{\partial b^*}{\partial c_1} = \frac{\Delta b^*_{Am6-Am2}}{\Delta c_1}$$
(101)

$$\frac{\partial L^*}{\partial c_2} = \frac{\Delta L^*_{Am7-Am2}}{\Delta c_2}; \frac{\partial a^*}{\partial c_2} = \frac{\Delta a^*_{Am7-Am2}}{\Delta c_2}; \frac{\partial b^*}{\partial c_2} = \frac{\Delta b^*_{Am7-Am2}}{\Delta c_2}$$
(102)

$$\frac{\partial L^*}{\partial c_3} = \frac{\Delta L^*_{Am8-Am2}}{\Delta c_3}; \frac{\partial a^*}{\partial c_3} = \frac{\Delta a^*_{Am8-Am2}}{\Delta c_3}; \frac{\partial b^*}{\partial c_3} = \frac{\Delta b^*_{Am8-Am2}}{\Delta c_3}$$
(103)

4.2.3 Cálculo das receitas com correção

Uma vez que os elementos da matriz de influência M foram determinados ou pelo método "tingimentos com corantes individuais" (3.5.1) ou pelo método "tingimentos com combinações" (3.5.2) e a matriz de correção M⁻¹ calculada pela inversão, podemos determinar as correções do Substrato B para o Substrato A (ou qualquer outro substrato) medindo as diferenças CIELAB entre os dois tingimentos com a receita "padrão" nos dois substratos, e multiplicando a matriz de correção M⁻¹ com o vetor L (diferenças CIELAB):

$$C_{corr} = M^{-1} X L \tag{104}$$

$$\begin{bmatrix} \Delta c_{corr1} \\ \Delta c_{corr2} \\ \Delta c_{corr3} \end{bmatrix} = \mathbf{M-1} \times \begin{bmatrix} \Delta L^* \\ \Delta a^* \\ \Delta b^* \end{bmatrix}$$
(105)

Por exemplo, o cálculo para a correção do Substrato B para Substrato A, referente ao Quadro 3 resultou em:

$$\begin{bmatrix} \Delta C_{corr1} = -0.0033 \\ \Delta C_{corr2} = 0.0020 \\ \Delta C_{corr3} = -0.0161 \end{bmatrix}$$
 (106)

A nova receita corrigida será conforme a Tabela 14:

Tabela 14 – Exemplo da correção das receitas

Corantes (%) spm	Cor Padrão Bege Substrato B	Correção Amarelo	Correção Vermelho	Correção Marinho	Cor Bege Corrigida Substrato Gorgurão
Amarelo (%)	0,1335	-0,0033	-	-	0,1302
Crimson (%)	0,0212	-	0,0020	-	0,0232
Marinho (%)	0,1107	-	-	-0,0161	0,0946